Perivascular Epithelioid Cell Neoplasm (Pecoma) of the Uterus: A Case Report and Review of the Literature

Anic K1*, Karch K1, Straub BK2, Hönig A1, Soder S4, Schmidt MW1, Battista MJ1, Schmidt M1, Hasenburg A1 and Schwab R1

1Department of Gynecology and Obstetrics, University Medical Center of the Johannes Gutenberg University Mainz, Germany
2Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
3Department of Gynecology and Obstetrics, Katholisches Klinikum Mainz, Germany
4Outpatient surgery center micma Mainz, Germany

*Corresponding author:
Katharina Anic,
Department of Gynecology and Obstetrics,
University Medical Center of the Johannes Gutenberg University Mainz, Germany
E-mail: katharina.anic@unimedizin-mainz.de; katharina.gillen@gmx.de

Received: 10 June 2021
Accepted: 01 July 2021
Published: 07 July 2021

Copyright: ©2021 Anic K, et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially.

Keywords:
Perivascular epithelioid cell tumor; PEComa;
Uterus; HMB45; Neoplasm; Mesenchymal tumor

1. Summary
Uterine perivascular epithelioid cell tumors (PEComas) are rare lesions, composed of cells with mesenchymal, epithelioid and smooth muscle differentiation with expression of melanocytic markers [1]. Clinical symptoms and imaging findings are usually non-specific and diagnosis is confirmed by histological analyses. Due to the metastatic potential of PEComas, complete surgical resection followed by close oncological follow-up is crucial in the therapeutic workup [2]. This case report presents a 55-years-old woman with an incidental finding of a uterine PEComa with a diameter of more than 6 cm of unknown malignant potential.

2. Abstract

2.1. Background: Perivascular epithelioid cell tumors (PEComas) of the uterus encompass a rare family of mesenchymal neoplasms characterized by co-expression of smooth muscle and melanocytic markers in epithelioid or spindle cells. Due to their unclear malignant potential, a close follow-up after surgical resection is mandatory.

2.2. Case Presentation: We present the case report of a 55-year-old woman who underwent hysterectomy due to the diagnosis of a uterus myomatosus with growing tendency. Preoperative imaging by ultrasonography and magnetic resonance imaging scan (MRI) did not show specific findings. A uterine PEComa was diagnosed by morphology and immunohistology.

2.3. Conclusion: Uterine PEComas are extremely rare tumors, which, in most cases, are diagnosed incidentally based on specific morphological and immunohistochemical features.

3. Introduction
In 1992, Bonetti et al. published the first report of a lesion belonging to the heterogenic family of neoplasms with perivascular epithelioid cell tumors (PEComa) in the lung and kidney [3]. However, PEComas can be found in various locations including the complete urogenital tract and even in bones. Uterine PEComas, first discovered in 1996 by Pea et al., are classified as sarcomas but only account for less than five percent of uterine cancers [4]. According to the histopathologic classification by the World Health Organization (WHO) in 2003, there are four main types of uterine sarcomas: leiomyosarcomas, endometrial stromal sarcomas, adenosarcomas and other sarcomas of the uterus, such as PEComas [5].

4. Case Report
A 55-year-old woman without pre-existing medical conditions was admitted to our hospital due to unspecific lower abdominal pain...
and menorrhagia. Treatment with a progestin mono-therapy led to amenorrhea and pain relief. Preoperative ultrasound scan and pelvic magnetic resonance imaging (MRI) showed multilocular uterine fibroids with a growth tendency and a 6 cm subserosal solid and inhomogeneous, partially enhancing mass on the MRI scan, adjacent to the left side of the uterine fundus. The mass appeared as non-infiltrating, with a well-circumscribed border with signs of hyper vascularization. The endometrial morphology was normal (Figure 1). Both, the fallopian tubes and the ovaries showed no abnormalities in the imaging procedures. We performed a total laparoscopic hysterectomy with bilateral opportunistic adnexectomy. The tumor was locally resected in sano.

Due to safety considerations and because of the atypical vascularization of the lesion with a wide vessel pedicle reaching caudal from the uterus wall to the left round ligament, the uterus was removed in toto under strict oncologic safety aspects. Because of the unknown dignity, the excision borders of the tumor were chosen as wide as possible. Subsequently, the uterus and the adnexa were placed in a laparoscopic surgery retrieval pouch and removed in toto through the vagina (Figure 2).

Figure 1: Preoperative pelvic MRI findings of a suspect subserosal mass in the lower abdomen originating from the uterus
A: Sagittal T2-weighted image shows a heterogeneous partially enhancing subserosal mass on fundus of the uterus
B: Axial fat-suppressed contrast-enhanced T1 weighted image shows the enhancement of the well-circumscribed subserosal mass with a regular shape

Figure 2: Intraoperative view during totally laparoscopic hysterectomy.
*: suspect mass
Figure A: A: Laparoscopic view of the lower abdomen
Figure B: Mobile, broadly pedunculated, vulnerable tumor originating from the left round ligament
Figure C: Posterior view of the tumor. The mass is adjacent to the left round ligament and is not connected to other organs.
Figure D: The tumor is strikingly soft and vulnerable.
Gross pathological analysis demonstrated 6.5 x 4.5 x 4.0 cm tumor with smooth borders and surrounded by a shiny surface. The lesion presented itself as an encapsulated rubbery mass with a lobulated, irregular cutting surface in tan-pink and brown due to foci of hemorrhage. Microscopical analysis of the solid lesion showed polygonal plump spindle cell to epithelioid cells and moderate nuclear size variations, as well as abundant blood vessels of varying caliber. The tumor mass had neither necrosis nor infiltrative growth. The tumor cells exhibited oval nuclei with prominent nucleoli and abundant granular slightly eosinophilic cytoplasm (Figure 3 (A)+(B)). Immunohistochemical analyses were consistently positive for smooth muscle actin and diffusely positive for caldesmon (Figure 3 (C)+(D)). The tumor cells showed patchy expression of HMB45 (approximately 30% of tumor cells) (Figure 3 (E)). The proliferation activity of tumor cells (Ki67) was less than 5%, and only a low mitotic rate was detected (Figure 3 (F)).

Figure 3: Histopathology of the PEComa.
A: Low magnification (40x) of tumor tissue section with the tumor capsule (*) on the left (H&E staining) B: High magnification (400x) of the tumor showing high vessel density with radially arranged spindle cells with granular eosinophilic cytoplasm (H&E staining). C-F: Immunohistochemical staining of the PEComa shows coexpression of both the smooth muscle markers C: alpha smooth-muscle actin (ASMA), as well as of D: caldesmon and E: the melanocytic marker HMB45. F: Low Ki67-(MIB1) proliferation rate. *: tumor capsule

5. Discussion
According to the WHO, PEComas are defined as a rare subtype of tumors of mesenchymal origin, composed of epithelioid cells with eosinophilic and partly granulated cytoplasm, which are characterized by immunohistochemical co-expression of melanocytic (e.g. HMB45, melan A and S100) and smooth muscle markers (e.g. smooth muscle actin, desmin and caldesmon) [5, 6]. PEComas occur most frequently in the abdominopelvic cavity, the retroperitoneum and the uterus [7, 8]. To date, approximately 150 cases of PEComas of different localizations were described, but only 90 cases originated from the gynecological tract. The clinicopathological characteristics of uterine PEComas are summarized in (Table 1). Two different molecular subtypes of PEComas have been identified. Most PEComas are characterized by a loss of function of the TSC1/TSC2 complex and in majority a loss off heterozygosity (LOH) in the TSC2 gene, subsequently leading to increased mTORC1 activation and deregulated cell growth signaling [9]. Additionally, a distinct small second subset of PEComas were identified which showed no association to tuberous sclerosis, but presented rearrangements of the TFE3(Xp11) gene locus [10]. The TFE3-translocated PEComas display an epithelioid phenotype and attenuated or missing expression of myogenic markers [11]. Mesenchymal neoplasms composed of perivascular epithelioid cells present a heterogeneous group of tumors including Clear-Cell «Sugar» Tumor (CCST) of the lung and extrapulmonary sites, AngioMyoLipoma (AML), LymphAngioleioMyomatosis (LAM), as well as clear-cell epithelioid and spindle cell tumors of other anatomical sites [12]. Ten percent of PEComas are associated with the rare multisystem disorder LAM, which in most cases affects the lungs [13]. LAM can occur either in association with the tuberous sclerosis complex (TSC-LAM) or, in sporadic cases, without tuberous sclerosis (sporadic LAM) [14]. Less than ten percent of uterine PEComas are associated with tuberous sclerosis.
Table 1: Uterine PEComas – clinicopathological characteristics

<table>
<thead>
<tr>
<th>Definition [4, 5]</th>
<th>Perivascular epithelioid cell tumors (PEComas) encompass a family of mesenchymal neoplasms consisting of perivascular cells with epithelioid, partially granulated cytoplasm with melanocytic markers, that can occur in any part of the human body</th>
</tr>
</thead>
</table>
| Epidemiology [2, 11] | Rare mesenchymal neoplasms
- women: men = 7:1 in all localisations
- mostly premenopausal women with a peak incidence within the fourth decade of life > approximately 90 cases of gynecological PEComas described to date
- gynecological PEComas accounted for 25% of PEComa cases |
| Pathogenesis [9, 13, 14] | - 10% association with tuberous sclerosis complex (TSC) or lymphangioleiomyomatosis (LAM)
- uterus as the source of LAM cells
- uterus as a target for metastasis rather than the primary source
- biallelic TSC2 mutations indicates alternative tumorigenic pathways |

<table>
<thead>
<tr>
<th>Pathology [16, 17, 30, 31]</th>
<th>Macroscopy</th>
<th>Microscopy:</th>
<th>Immunohistochemistry</th>
</tr>
</thead>
</table>
| | - majority arise in the uterine corpus the cervix is less frequently involved | - epithelioid and spindle cells typically arranged around blood vessels which grow in sheets or nests
- epithelioid cells are typically localized periluminar, while peripheral cells are more spindle-shaped
- cells with small round to oval nuclei without prominent nuclei with clear to eosinophilic cytoplasm
- uterine PEComas show variable amounts of stromal hyalinization | - immunoreactive for both smooth muscle and melanocytic markers
- immunophenotype: |
| | | | HMB45 [100%]
smooth muscle actin 73%
vimentin 56%
CD10 25%
Melan-a 24%
h-caldesmon cathepsin k TFE3 <10% |

| Differential diagnosis | - epithelioid smooth muscle tumors of the uterus
- epithelioid stroma sarcomas
- paragangliomas |
| Diagnostic procedures | - clinical presentation is non-specific and varies depending on the localization
- Ultrasound, Computed tomography scans (CT) and magnetic resonance imaging (MRI) are mostly used as complementary imaging |

| Classification [22] | Histological malignancy criteria (proposed by Folpe et al.):
Tumor size ≥ 5cm
Infiltrative growth pattern
Mitotic rate > 1/50 high power fields (HPF)
High nuclear grade cellularity
Necrosis
Vascular invasion |

| Three categories: | benign: no criteria for malignancy
uncertain malignant potential: one criterium for malignancy
malignant: ≥2 criteria for malignancy |

| Staging [20, 21] | in analogy with uterine (leiomyo-) sarcomas with a thoracic and an abdominal CT scan |
| Therapy [26, 28, 29] | - no unanimous consensus
- surgical excision as mainstay of primary treatment
- in PEComas with aggressive behavior or in metastatic disease:
 □ Possible adjuvant or palliative chemotherapy regimens: Adriamycin, high-dose Ifosfamide, Trabectedin, Docetaxel/Gemcitabine, dacarbazine-based regimens
 □ radiation therapy
 □ targeted immunotherapies with mTOR inhibitors (e.g. Sirolismus, Temsirolismus or Everolismus) |
| Prognosis [32, 33] | Relapse: 20%
Lethality: 10% |

PEComa: Perivascular epithelioid cell tumor; LAM: Lymphangioleiomyomatosis; TSC: tuberous sclerosis complex; HPF: high power fields
The spectrum of possible differential diagnoses for uterine PEComas include endometrial stromal sarcomas, epithelioid smooth muscle tumors and paragangliomas. PEComas can display several histomorphological characteristics and morphological diversities. Sclerosing PEComas for example show stromal hyalinization. Further microscopic features can consist of the detection of multinucleated cells, spider cells and stromal microcysts [15]. Typically, the cells grow in sheets or nests and display impressive vascular invasion [6]. The mitotic rate is usually between 10 and 50 HPFs, and atypical mitoses are frequently observed [16]. Positive staining for HMB45 and caldesmon are typical immunohistochemical findings in PEComas. The lack of staining for HHF35, desmin, alpha-smooth muscle actin, CD10, as well as negative staining for synaptophysin, chromogranin A and S-100 protein can favor the diagnosis of PEComa [17].

PEComas may originate from any area of the gynecological tract, but in most cases they were diagnosed in the uterine corpus of premenopausal women. The diagnosis of a PEComa is challenging, due to the lack of specific clinical symptoms or distinct radiological findings, and in most cases, asymptomatic small tumors were discovered accidentally. The most common but non-specific symptoms are atypical uterine bleeding or lower abdominal pain, but clinical manifestations may vary depending on the location and dimensions of the tumor [18].

Commonly used preoperative diagnostic methods are ultrasound and MRI or computed tomography scans (CTs), although imaging features of PEComas are nonspecific. Tan et al. published a large imaging series of 32 cases of malignant PEComas, and described significant enhancement in CT and MRI scans [19]. According to previously cited literature, the preoperative imaging procedures performed in our case suggested the diagnosis of multiple uterine leiomyomas with increased vascularity but without specific signs of malignancy. Additionally, gross pathologic examination showed no suspicious signs for malignancy. In summary, PEComas are diagnosed in most cases by a combination of histopathological features and immunohistochemical findings after surgical excision.

The treatment workup is based on the therapy algorithm for uterine (leiomyo-) sarcomas. No further therapy is indicated after complete surgical resection and if distant metastases were ruled out. Due to the rarity of PEComas, an accurate assessment of prognosis is difficult. Fortunately, approximately 90% of patients had a favorable prognosis. Screening procedures for distant metastases should include both a thoracic and abdominal CT scan [20, 21]. Folpe and Mentzel proposed a classification of PEComas based on morphological high-risk features. A size of ≥5 cm, infiltrative growth pattern, a mitotic rate of ≥1/HPF, high nuclear grade and cellularity, as well as necrosis and vascular invasion were defined as potential malignancy criteria with a significant association with recurrences [22, 23]. For clinical and therapeutic purposes, PEComas are classified in analogy to the FIGO- or TNM-classification system [2, 24]. Distant metastases are present in approximately 7% of patients at the time of diagnosis. In most cases, they are localized in the liver, the lungs, the bones or the brain. Recurrences occur in one fifth of patients despite the majority of low-grade lesions [2]. Thus, a close oncologic follow-up with surveillance imaging is highly recommended. Adjuvant therapy is not indicated after complete local excision of PEComas. In sporadic case reports heterogeneous results were achieved with various adjuvant chemotherapy treatment regimens like dacarbazine, ifosfamide, doxorubicine or vincristine were tested [25]. In case of relapse or metastasis, neoadjuvant or adjuvant chemotherapy, radiation therapy and immunotherapy regimens were described [26, 27]. In PEComas expressing hormone receptors, antiestrogenic treatment is still a matter of controversy. Nevertheless, a significant clinical response has been previously described after treatment with mTOR inhibitors (e.g. sirolimus, temsirolimus or everolimus) as an impairment of TSC2 gene function has been associated with the mTOR signaling pathway in extragenital angiomyolipomas of the kidneys [28, 29].

6. Conclusion
Perivascular epithelioid cell tumors (PEComa) are rare tumors of mesenchymal origin and can affect various anatomic regions. Most of these lesions consist of epithelioid cells with eosinophilic granulated cytoplasm and present a co-expression of smooth muscle and melanocytic markers. Uterine PEComas are part of uterine sarcomas, mostly diagnosed incidentally. Optimal treatment is controversially discussed, although surgical resection remains the gold standard. Systemic treatment is warranted in high risk or metastatic disease. Our patient demonstrates, that a rare tumor diagnosis demanded an interdisciplinary approach.

References
5. TAVASSOLI FA. Pathology and Genetics of Tumours of the Breast and Female Genital Organs. World Health Organ Classif Tumours. 2003.

32. Konsultationsfassung S3-Leitlinie Adulte Weichgewebesarkome.